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Abstract—The group testing approach, which achieves
significant cost reduction over the individual testing approach,
has received a lot of interest lately for massive testing of COVID-
19. Many studies simply assume samples mixed in a group are
independent. However, this assumption may not be reasonable
for a contagious disease like COVID-19. Specifically, people
within a family tend to infect each other and thus are likely to be
positively correlated. By exploiting positive correlation, we make
the following two main contributions. One is to provide a
rigorous proof that further cost reduction can be achieved by
using the Dorfman two-stage method when samples within a
group are positively correlated. The other is to propose a
hierarchical agglomerative algorithm for pooled testing with a
social graph, where an edge in the social graph connects frequent
social contacts between two persons. Such an algorithm leads to
notable cost reduction (roughly 20–35%) compared to random
pooling when the Dorfman two-stage algorithm is applied.

Index Terms—COVID-19, group testing, regenerative pro-
cesses, Markov modulated processes, social networks.

I. INTRODUCTION

MASSIVE testing is one of the most effective measures

to detect and isolate asymptomatic COVID-19 infec-

tions to reduce the transmission rate of COVID-19 [1]. How-

ever, massive testing for a large population is very costly if it

is done one at a time. The recent article posted on the US FDA

website [2] indicates that the group testing approach (or pool

testing, pooled testing, batch testing) has received a lot of

interest lately. Such an approach (testing a group of mixed

samples) can greatly save testing resources for a population

with a low prevalence rate [3]–[6]. Moreover, the following

testing procedure is suggested in the US CDC’s guidance for

the use of pooling procedures in SARS-CoV-2 [7]:

“If a pooled test result is negative, then all specimens can

be presumed negative with the single test. If the test result is

positive or indeterminate, then all the specimens in the pool

need to be retested individually.”

A simple testing procedure that implements the above guid-

ance is known as Dorfman’s two-stage group testing

method [8]. The method first partitions the population into

groups of M samples. If the test of a group of M samples is

negative, then all the M samples in that group are declared to

be negative. Otherwise, each sample in that group is retested

individually. Such a method has been implemented by many

countries for massive testing of COVID-19 [9].

To measure the amount of saving of a group testing method,

Dorfman used the expected relative cost (that is defined as the

ratio of the expected number of tests required by the group

testing method to the number of tests required by the individ-

ual testing). The expected relative cost for independent and

identically distributed (i.i.d.) samples was derived in [8]. Sup-

pose that the prevalence rate (the probability that a randomly

selected sample is positive) is r1. Note that if the test result of
a group is positive, all the samples in that group need to be

retested individually. For a group of M samples, the group is

tested positive with the probability 1� ðr0ÞM , where r0 ¼ 1�
r1. So the expected number of tests for the group is 1þM �
ð1� ðr0ÞMÞ ¼ ðM þ 1Þ �Mðr0ÞM . Thus, the expected rela-

tive cost for i.i.d. samples with group sizeM is

M þ 1

M
� ðr0ÞM: (1)

One can then use (1) to optimize the group size M according

to the prevalence rate [8].

There are more sophisticated group testing methods for

implementing the CDC’s guidance for testing COVID-19 (see

e.g., [10]–[15]). These methods require diluting a sample and

then pooling the diluted samples into multiple groups (pooled

samples). Such methods are specified by two components: (i)

a pooling matrix that directs each diluted sample to be pooled

into a specific group, and (ii) a decoding algorithm that uses

the test results of pooled samples to reconstruct the status (i.e.,

a positive or negative result) of each sample. As shown in the

recent comparative study [15], the expected relative costs of

such methods depend heavily on the pooling matrix, and one

has to select an appropriate pooling matrix according to the

prevalence rate. For i.i.d. samples, using such sophisticated

methods result in significant gains over the simple Dorfman

two-stage group testing method, in particular when the preva-

lence rate is low (below 5%).

In practice, samples are not i.i.d. For a contagious disease

like COVID-19, people in the same family (or social bubble)
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are likely to infect each other. Lendle et al. [16] studied the

efficiency (i.e., the expected relative costs) for group testing

methods when samples within a group are positively corre-

lated exchangeable random variables. They derived closed-

form expressions of efficiency for hierarchical- and matrix-

based group testing methods under certain assumptions, and

examined three models of exchangeable binary random varia-

bles. They concluded that positive correlations between sam-

ples within a group could improve efficiency.

Moreover, in the recent WHO research article [17], it was

shown by computer simulations that pooled samples from

homogeneous groups of similar people could lead to cost

reduction for the Dorfman two-stage method. The main objec-

tive of this paper is to provide insight and proof for that obser-

vation through a mathematical model.

Let us consider a testing site where people form a line (or

queue) to be tested. It is reasonable to assume that people

arriving in groups of various sizes are in contiguous posi-

tions of the line. Since the disease prevalence rate in two

arriving groups may differ, we say that two groups are of

the same type if they have the same prevalence rate. People

in M contiguous positions are pooled together and tested by

using Dorfman’s two-stage group testing method. For our

analysis, we make the following three mathematical

assumptions:

(A1) i.i.d. group sizes: The sizes of arriving groups of people

are i.i.d. with a finite mean.

(A2) i.i.d. group types: There areK types of arriving groups.

The types of arriving groups of people are i.i.d. With

probability pk, a group of arriving people is of type k,
k ¼ 1; 2; . . . ; K.

(A3) Homogeneous samples within the same group: Samples

obtained from people within the same group are i.i.d.

Bernoulli random variables with the same prevalence

rate. With probability r0;k (resp. r1;k ¼ 1� r0;k), a sam-

ple in a type k group is negative (resp. positive).

An illustration of an arrival process in a testing site is pro-

vided in Fig. 1. In this figure, the number of people in the first

group T1 is 4, the number of people in the second group T2 is

7, the number of people in the third group T3 is 6, and the

number of people in the forth group T4 is 5. Eight samples of

contiguous positions are pooled together for Dorfman’s two-

stage group testing, i.e.,M ¼ 8.
Denote by XðtÞ the indicator random variable of the tth

sample in the line of the testing site. We say the tth sample is

negative (resp. positive) if XðtÞ ¼ 0 (resp. XðtÞ ¼ 1). Con-
sider using the Dorfman two-stage method for testing the M

consecutive samples Xðtþ 1Þ; Xðtþ 2Þ; . . . ; XðtþMÞ for

some fixed t � 0. With probability

1� PðXðtþ 1Þ ¼ 0; Xðtþ 2Þ ¼ 0; . . . ; XðtþMÞ ¼ 0Þ;
the test result for the group of M consecutive samples is posi-

tive and they need to be tested individually. Thus, the

expected number of tests is

1þ ð1� PðXðtþ 1Þ ¼ 0; Xðtþ 2Þ ¼ 0; . . . ; XðtþMÞ ¼ 0ÞÞM:

As such, the expected relative cost for these M samples by the

Dorfman two-stage method is

M þ 1

M
� PðXðtþ 1Þ ¼ 0; Xðtþ 2Þ ¼ 0; . . . ; XðtþMÞ ¼ 0Þ:

(2)

We state the first main result of this paper in the following

theorem.

Theorem 1: Suppose that the arriving process fXðtÞ; t �
1g satisfying (A1)-(A3). The expected relative cost for pooling
anyM consecutive samples into a group is not higher than that

for pooling M samples at random, i.e., the expected relative

cost in (2) is not higher than (1) with

r0 ¼
XK
k¼1

pkr0;k: (3)

Our second main result is the monotonicity of the expected

relative cost under a stronger assumption than (A1).

(A1þ) The group sizes are independent and geometrically dis-

tributed with parameter 1� v for some 0 � v � 1.
Theorem 2: Suppose that the arriving process fXðtÞ; t �

1g satisfying (A1þ), (A2), and (A3). Then the expected rela-

tive cost in (2) is decreasing in v.

Note that when v ¼ 0, fXðtÞ; t � 1g is reduced to the

sequence of i.i.d. samples with the prevalence rate r1. As
such, the monotonicity result in Theorem 2 is a stronger result

than that in Theorem 1.

Our third main result is a closed-form expression for the

expected relative cost under (A1þ), (A2), and (A3).
Theorem 3: Under (A1þ), (A2), and (A3), the expected rel-

ative cost is

M þ 1

M
� pRðPRÞM�11; (4)

where P ¼ ðpi;jÞ is theK �K matrix with

pi;j ¼ vþ ð1� vÞpi if j ¼ i
ð1� vÞpj if j 6¼ i

�
; (5)

R is the diagonal matrix with the kth diagonal element being

r0;k, 1 is theK � 1 (column) vector with all its elements being

1, and p is the 1�K (row) vector with its kth element being pk.

We can further derive the lower bound of the expected rela-

tive cost in (4).

Theorem 4: Under (A1þ), (A2), and (A3), the expected rel-

ative cost is lower bounded by

Fig. 1. An illustration of an arrival process in a testing site, where Ti is the
group size of the ith arriving groups, ZðtÞ is the group type of the tth sample,
and M samples of contiguous positions are pooled together for Dorfman’s
two-stage group testing.
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M þ 1

M
� r0ðvþ ð1� vÞr0ÞM�1: (6)

Using the closed-form expression in Theorem 3, we com-

pare the expected relative cost of the simple Dorfman two-

stage method with the lowest expected relative cost of the

ðd1; d2Þ-regular pooling matrix [15]. With a moderate positive

correlation, our numerical results demonstrate that the gain by

such a simple method outperforms those by using sophisti-

cated strategies with ðd1; d2Þ-regular pooling matrices when

the prevalence rate is higher than 5%.

The results for samples in a line of a testing site only

exploit the positive correlations between two contiguous

samples in a line graph. One important extension is to con-

sider pooled testing with a social graph, where frequent

social contacts between two persons are connected by an

edge in the social graph. Contagious diseases such as

COVID-19 can propagate the disease from an infected per-

son to another person through the social contacts between

two persons, two persons connected by an edge are likely to

infect each other, and they are likely to be positively corre-

lated. To exploit the positive correlation in a social graph,

we adopt the probabilistic framework of sampled graphs for

structural analysis in [18]–[20]. In particular, we propose a

hierarchical agglomerative algorithm for pooled testing

with a social graph (see Algorithm 1). Our numerical results

show that such an algorithm leads to significant cost reduc-

tion (roughly 20%-35%) compared to random pooling when

the Dorfman two-stage algorithm is used.

The paper is organized as follows: in Section II-A, we

prove Theorem 1 and Theorem 2 by using the renewal prop-

erty of regenerative processes. We then prove Theorem 3

and Theorem 4 in Section II-B by using the Markov prop-

erty of Markov modulated processes. In Section III, we

extend the dependency of samples from a line graph to a

general graph. There we propose a hierarchical agglomera-

tive algorithm to exploit the positive correlation of samples.

The numerical results are shown in Section IV. The paper is

concluded in Section V, where we discuss possible exten-

sions for future works.

II. MATHEMATICAL ANALYSES AND PROOFS

A. Regenerative processes

In this section, we prove the main result in Theorem 1 and

Theorem 2 by using the renewal property of regenerative pro-

cesses (see, e.g., Section 6.3 of the book [21]).

Let fTi; i � 1g be the number of samples in the ith group,

and ti ¼
Pi

‘¼1 T‘ be the cumulative number of samples in the

first i groups. Since we assume that fTi; i � 1g are i.i.d. in

(A1), fti þ 1; i � 1g is a renewal process. From (A2) and

(A3), fXðtÞ; t � 1g is a regenerative process with the regener-
ative points fti þ 1; i � 1g, i.e., fXðti þ tÞ; t � 1g has the

same joint distribution as fXðtÞ; t � 1g.
In the following lemma, we derive the prevalence rate.

Lemma 5: The prevalence rate of a randomly selected sam-

ple for the arrival process satisfying (A1)-(A3) is

r1 ¼
XK
k¼1

pkð1� r0;kÞ: (7)

Thus, r0 ¼ 1� r1 ¼
PK

k¼1 pkr0;k.
Proof. Let ZðtÞ be the group type of the tth sample. In view

of (A2), we have

PðZðtÞ ¼ kÞ ¼ pk; (8)

Also, from (A3),

PðXðtÞ ¼ 1jZðtÞ ¼ kÞ ¼ ð1� r0;kÞ: (9)

From the law of total probability, it follows that

PðXðtÞ ¼ 1Þ ¼
XK
k¼1

PðXðtÞ ¼ 1jZðtÞ ¼ kÞPðZðtÞ ¼ kÞ

¼
XK
k¼1

pkð1� r0;kÞ:

(10)

As (10) holds for any arbitrary t, the prevalence rate of a ran-
domly selected sample is the same as (10).

Now we prove Theorem 1.

Proof. (Theorem 1) In view of (2), it suffices to show that

for any t � 0,

PðXðtþ 1Þ ¼ 0; Xðtþ 2Þ ¼ 0; . . . ; XðtþMÞ ¼ 0Þ � ðr0ÞM:

(11)

For this, we first show that (11) holds for t ¼ 0 by induction

on M. Since PðXð1Þ ¼ 0Þ ¼ r0 from Lemma 5, the inequal-

ity in (11) holds trivially for M ¼ 1. Assume that the

inequality in (11) holds for t ¼ 0 and all m � M � 1 as the

induction hypothesis. From the law of total probability, we

have

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0Þ

¼
X1
s¼1

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞPðT1 ¼ sÞ

¼
XM�1

s¼1

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞPðT1 ¼ sÞ

þ
X1
s¼M

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞPðT1 ¼ sÞ:

(12)

Conditioning on the event fT1 ¼ sg for s � M, the number of

samples in the first group is not smaller than M. Thus, for s �
M, we have from (A2) and (A3) that
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PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞ

¼
XK
k¼1

pkðr0;kÞM

�
XK
k¼1

pkr0;k

 !M

¼ rM0 ; (13)

where the last inequality follows from Jensen’s inequality for

the convex function xM . For T1 ¼ s � M � 1, we know that

the second group starts from sþ 1. It then follows from the

renewal property in (A1) that

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞ
¼ PðXð1Þ ¼ 0; . . . ; XðsÞ ¼ 0jT1 ¼ sÞ
PðXðsþ 1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞ

¼
XK
k¼1

pkðr0;kÞs
 !

PðXð1Þ ¼ 0; . . . ; XðM � sÞ ¼ 0Þ

�
XK
k¼1

pkr0;k

 !s

PðXð1Þ ¼ 0; . . . ; XðM � sÞ ¼ 0Þ

� ðr0Þsðr0ÞM�s ¼ ðr0ÞM (14)

where the second last inequality follows from Jensen’s

inequality for the convex function xs, and the last inequality

follows from the induction hypothesis. Using (13) and (14)

in (12) completes the induction for t ¼ 0 in (11).

Now we show that (11) hold for any arbitrary t. For a fixed
t, let ~T1ðtÞ be the residual life from t to the next regenerative

point, i.e., the number of remaining samples in the same group

of the tth sample. The argument for any arbitrary t then fol-

lows from the same inductive proof for t ¼ 0 by replacing T1

with ~T1ðtÞ.
In the proof of Theorem 1, we show that

PðXðtþ 1Þ ¼ 0; Xðtþ 2Þ ¼ 0; . . . ; XðtþMÞ ¼ 0Þ
� ðr0ÞM ¼ ðPðXð1Þ ¼ 0ÞÞM: (15)

By replacing r0;k by 1� r0;k in the proof of Theorem 1, one

can also show that

PðXðtþ 1Þ ¼ 1; Xðtþ 2Þ ¼ 1; . . . ; XðtþMÞ ¼ 1Þ
� ðr1ÞM ¼ ðPðXð1Þ ¼ 1ÞÞM: (16Þ

LettingM ¼ 2 in (16) yields the following corollary.
Corollary 6: Suppose that the arriving process fXðtÞ; t �

1g satisfying (A1)-(A3). Then Xðtþ 1Þ and Xðtþ 2Þ are pos-
itively correlated, i.e.,

E½Xðtþ 1ÞXðtþ 2Þ� � E½Xðtþ 1Þ�E½Xðtþ 2Þ� � 0; (17)

where E½X� denotes the expectation operator of the random

variableX.

There are two key properties used in the proof of Theorem

1: the regenerative property and Jensen’s inequality (for con-

vex functions). To prove Theorem 2, we need the following

generalization of Jensen’s inequality.

Lemma 7: For any positive integers t1; t2; . . . ; tL,

YL
‘¼1

XK
k¼1

pkðr0;kÞt‘
 !

�
XK
k¼1

pkðr0;kÞ
PL

‘¼1
t‘ : (18)

Note that for t1 ¼ t2 ¼ � � � ¼ tL ¼ 1, the inequality in (18)

reduces to Jensen’s inequality for the convex function xL used

in the proof of Theorem 1.

Proof. Consider a random variable Y with the probability

mass function PðY ¼ r0;kÞ ¼ pk, k ¼ 1; 2; . . . ; K. Since

r0;k � 0 for all k, Y is nonnegative. Then the right-hand-side

of (18) can be written as E½Y
PL

‘¼1
t‘ �. Similarly, the left-hand-

side of (18) can be written as
QL

‘¼1 E½Y t‘ �. Thus, it suffices to
show that

YL
‘¼1

E½Y t‘ �� � � E½Y
PL

‘¼1
t‘ �: (19)

We show (19) by induction on L. For L ¼ 2, we consider two
independent random variables Y1 and Y2 that have the same

distribution as Y . Since Y1 and Y2 are nonnegative, for any

two positive integers t1 and t2,

ðY t1
1 � Y

t1
2 ÞðY t2

1 � Y
t2
2 Þ � 0: (20)

To see this, note that if Y1 � Y2, then Y
t1
1 � Y

t1
2 and Y

t2
1 �

Y
t2
2 . Taking expectations on both side of (20) yields

E½ðY t1
1 � Y

t1
2 ÞðY t2

1 � Y
t2
2 Þ�

¼ E½Y t1þt2
1 � � E½Y t1

2 Y
t2
1 � � E½Y t2

2 Y
t1
1 � þ E½Y t1þt2

2 � (21)

Since Y1 and Y2 are independent and have the same distribu-

tion as Y , we have from (21) that

E½Y t1 �E½Y t2 � � E½Y t1þt2 �: (22)

Now assume that (19) hold for L� 1 as the induction

hypothesis. From (22) and the induction hypothesis, it fol-

lows that

E½Y
PL

‘¼1
t‘ � � E½Y

PL�1

‘¼1
t‘ �E½Y tL �

�
YL
‘¼1

E½Y t‘ �� �
: (23Þ

Now we prove Theorem 2.

Proof. (Theorem 2) To show that the expected relative cost

in (2) is decreasing in v, it is equivalent to showing that

PðXð1Þ ¼ 0; Xð2Þ ¼ 0; . . . ; XðMÞ ¼ 0Þ is increasing in v.

Consider two arrival processes fXð1ÞðtÞ; t � 1g and

fXð2ÞðtÞ; t � 1g that are generated by using the parameters v1

and v2 in (A1þ), respectively. Assume that v2 � v1. Let T
ð1Þ
i

(resp. T
ð2Þ
i ) be the group size of the ith group in the first (resp.
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second) arrival process. Note from (A1þ) that for all i � 1 and
n � 1,

P ðT ð1Þ
i ¼ nÞ ¼vn�1

1 ð1� v1Þ;
P ðT ð2Þ

i ¼ nÞ ¼vn�1
2 ð1� v2Þ:

The trick of the proof is to couple the two sequences of group

sizes fT ð1Þ
i ; i � 1g and fT ð2Þ

i ; i � 1g so that the regenerative

points of fXð2ÞðtÞ; t � 1g is a subset of the regenerative points
of fXð1ÞðtÞ; t � 1g. Such a coupling is feasible because the

random splitting of a renewal process with geometrically dis-

tributed interarrival times is also a renewal process with geo-

metrically distributed interarrival times. In particular, the size

of the first group for the second arrival process, i.e., T
ð2Þ
1 , is a

sum of the sizes of several groups for the first arrival process,

i.e.,

T
ð2Þ
1 ¼

XL
‘¼1

T
ð1Þ
‘ ; (24)

for some L � 1. An illustration of coupling two sequences of

group sizes fT ð1Þ
i ; i � 1g and fT ð2Þ

i ; i � 1g is shown in Fig. 2.
Following the regenerative analysis in the proof of Theorem

1, we condition on the event fT ð2Þ
1 ¼ sg and use the law of the

total probability to derive that

PðXð2Þð1Þ ¼ 0; . . . ; Xð2ÞðMÞ ¼ 0Þ

¼
X1
s¼1

PðXð2Þð1Þ ¼ 0; . . . ; Xð2ÞðMÞ ¼ 0jT ð2Þ
1 ¼ sÞ

PðT ð2Þ
1 ¼ sÞ: (25)

For s � M, we have from (A3) that

PðXð2Þð1Þ ¼ 0; . . . ; Xð2ÞðMÞ ¼ 0jT ð2Þ
1 ¼ sÞ

¼
XK
k¼1

pkðr0;kÞM: (26)

From the coupling of these two arrival processes,

PðXð1Þð1Þ ¼ 0; . . . ; Xð1ÞðMÞ ¼ 0jT ð2Þ
1 ¼ sÞ

¼ PðXð1Þð1Þ ¼ 0; . . . ; Xð1ÞðMÞ ¼ 0j
XL
‘¼1

T
ð1Þ
‘ ¼ sÞ

¼ E
YL
‘¼1

XK
k¼1

pkðr0;kÞT
ð1Þ
‘

 !" #
: (27)

As a direct consequence of Lemma 7, we then have

PðXð2Þð1Þ ¼ 0; . . . ; Xð2ÞðMÞ ¼ 0jT ð2Þ
1 ¼ sÞ

� PðXð1Þð1Þ ¼ 0; . . . ; Xð1ÞðMÞ ¼ 0jT ð2Þ
1 ¼ sÞ: (28)

The case for s < M is similar, and we have from (25) that

PðXð2Þð1Þ ¼ 0; . . . ; Xð2ÞðMÞ ¼ 0Þ
� PðXð1Þð1Þ ¼ 0; . . . ; Xð1ÞðMÞ ¼ 0Þ: (29)

B. Markov modulated processes

In this section, we prove Theorem 3 and Theorem 4 by

using the Markov property of Markov modulated processes

(see, e.g., Chapter 8 and Chapter 9 of the book [21]).

Recall that ZðtÞ is the group type of the tth sample. In view

of the memoryless property of the geometrical distribution,

we know that with probability v, the ðtþ 1Þth sample is still

in the same group of the tth sample. With probability 1� v, it
is in another group. Under (A1þ) and (A2), the sequence of

group types fZðtÞ; t ¼ 1; 2; . . .g is a Markov chain with K
states. Denote by pi;j the transition probability from state i to
state j for the (hidden) Markov chain. For such a Markov

chain, we then have

pi;j ¼ PðZðtþ 1Þ ¼ jjZðtÞ ¼ iÞ

¼ vþ ð1� vÞpi if j ¼ i
ð1� vÞpj if j 6¼ i

�
: (30)

It is easy to see that the correlation coefficient of Zðtþ 1Þ and
ZðtÞ is simply v, i.e.,

v ¼ E½Zðtþ 1ÞZðtÞ� � E½Zðtþ 1Þ�E½ZðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZðtþ 1ÞÞVarðZðtÞÞp : (31)

From (A3), we also know that fXðtÞ; t � 1g is a Markov mod-

ulated process that is modualted by the (hidden) Markov chain

fZðtÞ; t � 1g. The conditional probability that XðtÞ is nega-
tive given the (hidden) Markov chain is in the state k is r0;k,
i.e.,

r0;k ¼ PðXðtÞ ¼ 0jZðtÞ ¼ kÞ: (32)

As such, we have from the law of total probability that

PðXð1Þ ¼ 0; Xð2Þ ¼ 0; . . . ; XðMÞ ¼ 0Þ

¼
XK
k¼1

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jZð1Þ ¼ kÞ

PðZð1Þ ¼ kÞ: (33)

Fig. 2. An illustration of coupling two sequences of group sizes fT ð1Þ
i ; i � 1g

and fT ð2Þ
i ; i � 1g.
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From the (conditional) independence of Bernoulli samples in

(A3), it follows that

PðXð1Þ ¼ 0;Xð2Þ ¼ 0; . . . ; XðMÞ ¼ 0jZð1Þ ¼ kÞ
¼ PðXð2Þ ¼ 0; . . . ; XðMÞ ¼ 0jZð1Þ ¼ kÞ

PðXð1Þ ¼ 0jZð1Þ ¼ kÞ
¼ PðXð2Þ ¼ 0; . . . ; XðMÞ ¼ 0jZð1Þ ¼ kÞr0;k: (34)

Using (34) in (33) yields

PðXð1Þ ¼ 0; Xð2Þ ¼ 0; . . . ; XðMÞ ¼ 0Þ

¼
XK
k¼1

PðXð2Þ ¼ 0; . . . ; XðMÞ ¼ 0jZð1Þ ¼ kÞr0;kpk:

(35)

Now let

sk;M�1 ¼ PðXð2Þ ¼ 0; . . . ; XðMÞ ¼ 0jZð1Þ ¼ kÞ: (36)

Similar to the argument for (35), we can further condition on

the event fZð2Þ ¼ jg and use the law of total probability to

show that

sk;M�1 ¼
XK
j¼1

sj;M�2r0;jpk;j; (37)

for k ¼ 1; 2; . . . ; K. Let sM�1 be the K � 1 (column) vector

with its kth element being sk;M�1, P ¼ ðpi;jÞ be the K �K
transition probability matrix, and R be the diagonal matrix

with the kth diagonal element being r0;k. Then (37) can be

rewritten in the following matrix form:

sM�1 ¼ PRsM�2: (38)

Since sk;0 ¼ 1 for all k, we have from (38) that

sM�1 ¼ ðPRÞM�11; (39)

where 1 is theK � 1 vector with all its elements being 1.

Let p be the 1�K (row) vector with its kth element being

pk. Then we have from (35) and (39) that

PðXð1Þ ¼ 0; Xð2Þ ¼ 0; . . . ; XðMÞ ¼ 0Þ
¼ pRðPRÞM�11: (40)

Thus, the expected relative cost is

M þ 1

M
� pRðPRÞM�11; (41)

as in Theorem 3.

For v ¼ 1, we note that the Markov chain fZðtÞ; t ¼
1; 2; . . .g stays at the same state from time 1 onward, and the

M random variables fXð1Þ; Xð2Þ; . . .XðMÞg are i.i.d. when

conditioning on Zð1Þ. As such, they are exchangeable random

variables, and the distribution of
PM

t¼1 XðtÞ can be expressed

as a mixture of Binomial distributions. For the special case

v ¼ 1, our model of Markov modulated processes recovers

the model of exchangeable binary random variables in [16]

(see Assumptions 2 and 3 in [16]).

Now we prove Theorem 4.

Proof. (Theorem 4) Analogous to the proof of Theorem 1, it

suffices to show that for anyM � 1,

PðXð1Þ ¼ 0; Xð2Þ ¼ 0; . . . ; XðMÞ ¼ 0Þ
� r0ðvþ ð1� vÞr0ÞM�1:

(42)

For this, we show that (42) holds by induction on M. Since

PðXð1Þ ¼ 0Þ ¼ r0, the inequality in (42) holds trivially for

M ¼ 1. Assume that the inequality in (42) holds for all s �
M � 1 as the induction hypothesis. From the law of total prob-

ability, we have

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0Þ

¼
X1
s¼1

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞPðT1 ¼ sÞ

¼
XM�1

s¼1

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞPðT1 ¼ sÞ

þ
X1
s¼M

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞPðT1 ¼ sÞ:

(43)

Conditioning on the event fT1 ¼ sg for s � M, the number of

samples in the first group is not smaller than M. Thus, for s �
M, we have from (A2) and (A3) that

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞ

¼
XK
k¼1

pkðr0;kÞM

�
XK
k¼1

pkr0;k ¼ r0; (44)

where the last inequality follows from the fact that the convex

function xM � x for 0 � x � 1. For T1 ¼ s � M � 1, we

know that the second group starts from sþ 1. It then follows

from the renewal property in (A1) that

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞ
¼ PðXð1Þ ¼ 0; . . . ; XðsÞ ¼ 0jT1 ¼ sÞ
PðXðsþ 1Þ ¼ 0; . . . ; XðMÞ ¼ 0jT1 ¼ sÞ

¼
XK
k¼1

pkðr0;kÞs
 !

PðXð1Þ ¼ 0; . . . ; XðM � sÞ ¼ 0Þ

�
XK
k¼1

pkr0;k

 !
PðXð1Þ ¼ 0; . . . ; XðM � sÞ ¼ 0Þ

� ðr0Þ r0ðvþ ð1� vÞr0ÞM�s�1
� �

; (45)

where the second last inequality follows from the fact that the

convex function xM � x for 0 � x � 1, and the last inequality
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follows from the induction hypothesis. Since T1 is geometri-

cally distributed from (A1þ), we have

PðT1 ¼ sÞ ¼ ð1� vÞvs�1: (46)

Using (44), (45) and (46) in (43) yeilds

PðXð1Þ ¼ 0; . . . ; XðMÞ ¼ 0Þ

�
XM�1

s¼1

ðr0Þðr0ðvþ ð1� vÞr0ÞM�s�1Þð1� vÞvs�1

þ
X1
s¼M

r0ð1� vÞvs�1

¼ r20ð1� vÞðvþ ð1� vÞr0ÞM�2

XM�1

s¼1

v

vþ ð1� vÞr0

� 	s�1

þ r0v
M�1

¼ r0ðvþ ð1� vÞr0ÞM�1 (47)

This then completes the induction in (42).

III. POOLED TESTING WITH A SOCIAL GRAPH

In the previous section, we consider samples in a line of a

testing site, where the correlations between two contiguous

samples are characterized by a line graph. In this section, we

extend the dependency between two samples to a general

graph. Suppose that there is a social network modeled by a

graph G ¼ ðV;EÞ, where V is the set of nodes, and E is the

set of edges. A node in G represents a person in the social

graph, and an edge between two persons represents frequent

social contacts between these two persons. As a contagious

disease can propagate the disease from an infected person to

another person through the social contacts between these two

persons, two persons connected by an edge are likely to infect

each other. Thus, two samples obtained from two persons con-

nected by an edge are also likely to be positively correlated.

The question for pooled testing with a social graph G ¼
ðV;EÞ is how to exploit positive correlation from the edge con-

nections in a social graph to save pooled testing costs. Intui-

tively, a set of nodes that are densely connected to each other are

likely to be positively correlated. In social network analysis (see,

e.g., [22]), such a set of nodes is called a community. In view of

this, our idea for addressing the pooled testing problem with a

social graph is to detect communities in a graph and then pool

samples in the same community together for pooled testing.

Like pooled testing for people in a line, we define a pooling

strategy for a graph G ¼ ðV;EÞ with n nodes, i.e., jV j ¼ n, as
a permutation s of f1; 2; . . . ; ng that puts the n nodes into a

line. As such, when we use the Dorfman two-stage algorithm

with a given group size M, we can pool nodes sð1Þ; . . . ;
sðMÞ in the first group, nodes sðM þ 1Þ; . . . ; sð2MÞ in the

second group, etc. A random pooling strategy for a graph G ¼
ðV;EÞ is the strategy where the permutation s is selected at

random among the n! permutations. The main objective of

this section is to propose a pooling strategy from a community

detection algorithm in [18]–[20] that can achieve a lower

expected relative cost than the random pooling strategy.

A. The probabilistic framework of sampled graphs

In this section, we briefly review the probabilistic frame-

work of sampled graphs for structural analysis in [18]–[20].

For a graph GðV;EÞ with n nodes, we index the n nodes from

1; 2; . . . ; n. Also, let A ¼ ðai;jÞ be the n� n adjacency matrix

of the graph, i.e.,

ai;j ¼ 1; if there is an edge from node i to node j;
0; otherwise:

�

Let Ru;w be the set of paths from u to w and R ¼ [u;w2V Ru;w

be the set of paths in the graph GðV;EÞ. According to a proba-
bility mass function pð�Þ, called the path sampling distribu-

tion, a path r 2 R is selected at random with probability pðrÞ.
Let U (resp. W ) be the starting (resp. ending) node of a ran-

domly selected path by using the path sampling distribution

pð�Þ. Then the bivariate distribution

pU;W ðu; wÞ ¼ PðU ¼ u;W ¼ wÞ ¼
X

r2Ru;w

pðrÞ (48)

is the probability that the ordered pair of two nodes ðu; wÞ is
selected. Intuitively, one might interpret the bivariate distribu-

tion pU;W ðu; wÞ in (48) as the probability that both nodes u
and w are infected (through one of the paths r in Ru;w). Thus,

the bivariate distribution pU;W ðu; wÞ can also be viewed as a

similarity measure from node u to node w and this leads to the

definition of a sampled graph in [18]–[20].

Definition 8 (Sampled graph [18]–[20]): A graph GðV;EÞ
that is sampled by randomly selecting an ordered pair of two

nodes ðU;W Þ according to a specific bivariate distribution

pU;W ð�; �Þ in (48) is called a sampled graph and it is denoted

by the two-tuple ðGðV;EÞ; pU;W ð�; �ÞÞ.
Definition 9 (Covariance and Community [19], [20])): For

a sampled graph ðGðV;EÞ; pU;W ð�; �ÞÞ, the covariance between
two nodes u and w is defined as follows:

qðu; wÞ ¼ pU;W ðu; wÞ � pUðuÞpW ðwÞ: (49)

Moreover, the covariance between two sets S1 and S2 is

defined as follows:

qðS1; S2Þ ¼
X
u2S1

X
w2S2

qðu; wÞ: (50)

Two sets S1 and S2 are said to be positively correlated if

qðS1; S2Þ � 0. In particular, if a subset of nodes S � V is pos-

itively correlated to itself, i.e., qðS; SÞ � 0, then it is called a

community.

There are many methods to obtain a sampled graph [19]. In

this paper, we will use the following bivariate distribution

pU;W ðu; wÞ ¼ c � ðAþ 0:5 	A2Þðu; wÞ; (51)

where A ¼ ðai;jÞ is the adjacency matrix of a graph G ¼
ðV;EÞ, and c is the normalization constant so that the sum of
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pU;W ðu; wÞ over u and w equals to 1. As such bivariate distri-

bution is obtained from sampling paths with lengths 1 and 2, it

seems to be a good sampling distribution for modelling the

disease propagation within the second neighbors of an infected

person.

B. The hierarchical agglomerative algorithm for pooled

testing with a graph

We propose a pooling strategy that uses the hierarchical

agglomerative algorithm for community detection in sampled

graphs [20]. The detailed steps are outlined in Algorithm 1.

Initially, every node in the input graph is assigned to a set

(community) that contains the node itself. Then the algorithm

recursively merges two sets that have the largest covariance

into a new set. This is done by appending one set to the end of

the other set so that the order of the elements in each set can

be preserved. Each merge of two sets reduces the number of

sets by 1. Eventually, there is only one remaining set, and the

order of the elements in the remaining set is the pooling strat-

egy from the algorithm. It was shown in [20] that all the sets

are indeed communities if Algorithm 1 stops at the point when

there does not exist a pair of two positively correlated sets.

However, as our objective is to output a permutation for a

pooling strategy, we continue the merge of two sets until there

is only one remaining set.

As an illustrating example of our algorithm, we use the Zach-

ary karate club friendship network [23]. Such a friendship net-

work is obtained by Wayne Zachary over the course of two

years in the early 1970 s at an American university (see Fig. 3).

During the course of the study, the club split into two clusters

(marked with two different colors in Fig. 3) because of a dispute

between its administrator (node 34) and its instructor (node 1).

In Fig. 4(a), we show the dendrogram obtained from Algorithm

1 for the Zachary karate club friendship network by using the

similarity measure in (51). A dendrogram for a hierarchical

agglomerative algorithm is a tree-like graph with the height

indicating the order of the merges of two sets. The pooling strat-

egy is the list of the 34 nodes in the bottom of this figure. In

Fig. 4(b), we illustrate the members of the Zachary karate club

forming a line to be tested in a testing site.

IV. NUMERICAL RESULTS

A. Pooled testing on a line of a testing site

In this section, we compare the expected relative cost of

Dorfman’s two-stage method with that of a sophisticated

group testing method in [15] by considering the special case

with K ¼ 2, r0;1 ¼ 0 and r0;2 ¼ 1. In this case, there are two

types of arriving groups, and such a group is of type 1 (resp.

type 2) with probability p1 ¼ r1 (resp. p2 ¼ r0). The sizes of

these arriving groups are i.i.d. geometric random variables

with parameter 1� v. Moreover, with probability 1, samples

in the type 1 group are positive and those in the type 2 group

are negative. Consequently, we have XðtÞ ¼ 2� ZðtÞ for all t
and it reduces to the serial correlated model in [24]. The

Fig. 3. The Zachary karate club friendship network.

Fig. 4. (a) The dendrogram from Algorithm 1 for the Zachary karate club
friendship network by using the similarity measure in (51). (b) An illustration
of the 34 members of the Zachary karate club forming a line to be tested in a
testing site.

Algorithm 1. The Hierarchical Agglomerative Algorithm for

Pooled Testing with a Social Graph

Input: A sampled graph ðGðV;EÞ; pU;W ð�; �ÞÞ.
Output: A pooling strategy s.

(H1) Initially, the number of sets C is set to be n, and node i is
assigned to the ith set, i.e., Si ¼ fig, i ¼ 1; 2; . . . ; n.
(H2) Compute the covariance qðSi; SjÞ ¼ qðfig; fjgÞ from (49) for

all i; j ¼ 1; 2; . . . ; n.
while C > 1 do

(H3) Find the pairs of two sets i and j that have the largest

covariance qðSi; SjÞ.
(H4)Merge Si and Sj into a new set Sk by appending Sj to Si.

(H5) Update the covariances as follows:

qðSk; SkÞ ¼ qðSi; SiÞ þ 2qðSi; SjÞ þ qðSj; SjÞ: (52)

for each ‘ 6¼ k do

qðSk; S‘Þ ¼ qðS‘; SkÞ ¼ qðSi; S‘Þ þ qðSj; S‘Þ: (53)

end

C ¼ C � 1.
end

(H6) There is only one remaining set. Output s by letting sðiÞ be
the ith element in the remaining set.
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expected relative cost in this case is

M þ 1

M
� r0ðvþ ð1� vÞr0ÞM�1; (54)

where r0 ¼ p2. Notice that from Theorem 4, (54) achieves the

lower bound of the expected relative costs under (A1þ), (A2),
and (A3).

The optimal group size of M that induces the lowest

expected relative cost in (54) can be determined by the preva-

lence rate r1 and the parameter v in the hidden Markov model.

In general, the parameter v is unknown and difficult to esti-

mate; thus, in Section IV-A1, we choose the group size M
according to that in Table I of [8], which only depends on the

prevalence rate r1. However, if one can estimate the parameter

v reliably, the optimal group size of M can be selected

accordingly to further reduce the expected relative cost. We

optimizeM depending on both r1 and v in Section IV-A2.

1) Group size M determined by r1: In this section, we

choose the group sizeM from Table I of [8] that only depends

on the prevalence rate r1 (since the parameter v in the hidden

Markov model is generally unknown).

We numerically evaluate the expected relative cost in (54)

for each value of r1 ranging from 1% to 10% with increment

of 1%, and each value of v ranging from 0 to 0.9 with incre-

ment of 0.1. The results are shown in Table I. To compare the

expected relative costs of Dorfman’s two-stage algorithm

(with positively correlated samples) with those of the

ðd1; d2Þ-regular pooling matrices [15], we also list the lowest

expected relative costs of the ðd1; d2Þ-regular pooling matrices

(Table I of [15]) in Table I. In this table, we can easily verify

that the expected relative cost decreases in v. The numbers

given in boldface are the expected relative costs of Dorfman’s

two-stage algorithm of the smallest values of v that outper-

form those of the ðd1; d2Þ-regular pooling matrices under the

same prevalence rate r1. We can observe that when the preva-

lence rate r1 is low (e.g., r1 < 5%), the gain by Dorfman

two-stage method is not as good as that of ðd1; d2Þ-regular
pooling matrix, except for some large v. The reason is that

under a low prevalence rate, there are very few positive sam-

ples in a group, and such positive samples can be detected eas-

ily by using the sophisticated group testing method, thus

saving more testing costs. However, Dorfman’s 2-stage algo-

rithm can only check if the group contains at least one positive

sample at the first stage. When a group of M samples includes

any positive ones (even if there is only one positive sample in

the group), all the M samples should be retested individually

at the second stage. Thus, the performance of Dorfman’s

method is not as good as those of sophisticated group testing

methods, on the premise that the prevalence rate is low and

correlations between samples in a group are small. But when

the prevalence rate r1 is high (e.g., r1 � 5%), the simple

Dorfman’s method can achieve better performance with some

moderate positive correlation v.
To show the advantage of using positively correlated sam-

ples in Dorfman’s two-stage method, we calculate the ratio of

the expected relative cost with the positive correlation v to

that of the i.i.d. Bernoulli samples (v ¼ 0) in Table II. For

example, under the prevalence rate r1 ¼ 1%, the expected

TABLE I
THE EXPECTED RELATIVE COST OF THE DORFMAN TWO-STAGE ALGORITHM WITH GROUP SIZE M AND THE LOWEST EXPECTED RELATIVE COST OF

ðd1; d2Þ-REGULAR IN [15]. THE NUMBERS GIVEN IN BOLDFACE ARE THE EXPECTED RELATIVE COSTS OF DORFMAN’S TWO-STAGE ALGORITHM OF

THE SMALLEST VALUES OF v THAT OUTPERFORM THOSE OF THE ðd1; d2Þ-REGULAR POOLING MATRICES UNDER THE SAME PREVALENCE RATE r1

TABLE II
THE RATIO OF THE EXPECTED RELATIVE COST WITH POSITIVE CORRELATION

v TO THAT OF THE I.I.D. BERNOULLI SAMPLES (v ¼ 0) UNDER

DIFFERENT PREVALENCE RATE r1. (UNIT: %)

TABLE III
THE OPTIMAL GROUP SIZE OF THE DORFMAN TWO-STAGE ALGORITHM

WITH DIFFERENT VALUES OF THE PREVALENCE RATE r1 AND THE

CORRELATION COEFFICIENT v
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relative cost with v ¼ 0:1 is 0.1865 from Table I, and thus the

ratio is 0:1865=0:1956 ¼ 95:4%.

2) Group size M determined by r1 and v: In this section,

the optimal group sizeM that induces the lowest expected rel-

ative cost is determined by both the prevalence rate r1 and the

correlation coefficient v. For each value of r1 ranging from

1% to 10% with increment of 1%, and each value of v ranging

from 0 to 0.9 with increment of 0.1, we show its optimal group

size M in Table III and its corresponding expected relative

cost in Table IV. Intuitively, with correlated samples, the

group size for pooled testing can be larger. This can be veri-

fied in Table III, which shows the size M increases in v for a

fixed value of r1. To make a comparison of the expected rela-

tive costs of Dorfman’s two-stage algorithm (with positively

correlated samples) and those of the ðd1; d2Þ-regular pooling
matrices [15], we also list the lowest expected relative costs of

the ðd1; d2Þ-regular pooling matrices (Table I of [15]) in

Table IV. To show the advantage of using positively corre-

lated samples in Dorfman’s two-stage method, we calculate

the ratio of the expected relative cost with the positive correla-

tion v to that of the i.i.d. Bernoulli samples (v ¼ 0) in

Table V.

B. Pooled testing with a social graph

In this section, we report our simulation results for pooled

testing with a social graph. For our experiments, we use a syn-

thetic dataset and three real-world datasets. The synthetic

dataset is constructed by the small-world model in [25] as

follows. First, we generate a ring with 1000 nodes, and each

node has a degree of 30 connected to its nearest neighbors.

Then, for each edge, with probability 0.5, we remove that

edge and add a new one to two randomly selected nodes. By

doing so, we obtain the synthetic dataset. The three real-world

datasets are: the email-Eu-core in [26], [27], the political blogs

in [28] and the ego-Facebook in [29]. There are 986 nodes and

16 064 edges for the email-Eu-core network after removing

multiple edges, self-loops, and nodes with degree 0. For the

political blogs, there are 1224 nodes and 16 715 edges. For the

ego-Facebook dataset, we remove multiple edges, self-loops,

and nodes that are not in the largest component of the network

as in [30]. By doing so, there are 2851 nodes and 62 318 edges

left in the network. The basic information of datasets is given

in Table VI.

We also need a model for modelling disease propagation in

a network. A widely used model is the independent cascade

(IC) model (see, e.g., Kempe, Kleinberg, and Tardos in [31]).

In the IC model, an infected node can transmit the disease to a

neighboring susceptible node (through an edge) with a certain

propagation probability f. An infected neighboring node can

continue the propagation of the disease to its neighbors. For

our experiments, a set of seeded nodes S are randomly

selected in the IC model. Each neighbor of a seeded node is

infected with probability f. These infected nodes are called

the first-generation cascade of a seeded node and they can con-

tinue infecting their neighbors. The D-generation cascade

from a seeded node is generated by collecting the set of

infected nodes within the distance D of the seeded node, and

theD-generation cascade from the set S is generated by taking

TABLE IV
THE EXPECTED RELATIVE COST OF THE DORFMAN TWO-STAGE ALGORITHM WITH ITS OPTIMAL GROUP SIZE IN TABLE III, AND THE LOWEST EXPECTED

RELATIVE COST OF ðd1; d2Þ-REGULAR IN [15]. THE NUMBERS GIVEN IN BOLDFACE ARE THE EXPECTED RELATIVE COSTS OF DORFMAN’S TWO-STAGE ALGO-

RITHM OF THE SMALLEST VALUES OF v THAT OUTPERFORM THOSE OF THE ðd1; d2Þ-REGULAR POOLING MATRICES UNDER THE SAME PREVALENCE RATE r1

TABLE V
WITH OPTIMAL GROUP SIZES IN TABLE III, THE RATIO OF THE EXPECTED
RELATIVE COST WITH POSITIVE CORRELATION v TO THAT OF THE I.I.D.

BERNOULLI SAMPLES (v ¼ 0) UNDER DIFFERENT PREVALENCE
RATE r1. (UNIT: %)

TABLE VI
BASIC INFORMATION OF FOUR DATASETS. NOTE THAT THE POLITICAL BLOGS

DATASET IS NOT CONNECTED; THE AVERAGE PATH LENGTH AND THE

DIAMETER OF THE LARGEST CONNECTED COMPONENT IN POLITICAL
BLOGS ARE REPORTED
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the union of the D-generation cascades of the seeded nodes in

S. In our experiments, we set f ¼ 0:1 andD ¼ 2.
The pooling strategy for each dataset is obtained in the same

way as that for the Zachary karate club friendship network in

Section III-B. Specifically, we first generate a sampled graph

by using the bivariate distribution in (51). Then we use the

hierarchical agglomerative algorithm for pooled testing with a

social graph in Algorithm 1 to generate the pooling strategy.

In Fig. 5 (resp. Fig. 6, Fig. 7, Fig. 8), we show the expected

relative cost of Dorfman’s two-stage algorithm with the group

size M ¼ 10, as a function of the number of seeded nodes jSj
for the small-world dataset (resp. the email-Eu-core dataset,

the political blogs dataset, the ego-Facebook dataset).

In our experiments, the number of seeded nodes jSj is from
1 to 5. Each data point is obtained from averaging 10 000

independent runs. Specifically, for the ith run, we measure the

prevalence rate r
ðiÞ
1 and the total number of tests IðiÞ. The

expected relative cost is calculated by

P10000
i¼1 IðiÞ

n 	 10000 ;

where n is the number of nodes in the graph. The average

prevalence rate is calculated by

P10000
i¼1 r

ðiÞ
1

10000
:

As shown in Fig. 5, the pooling strategy from Algorithm 1

results in much lower expected relative costs than those from

the random pooling strategy. We note that the two curves,

Random(simulation) and Random(Theory) from (1), are

almost identical in this figure. We confirm the same finding

for the email-Eu-core, the political blogs and the ego-Face-

book datasets in Fig. 6, Fig. 7 and Fig. 8. To understand the

effect of the number of seeded nodes in a dataset, we show the

average prevalence rates in Table VII. As shown in this table,

the prevalence rates are in the range of 1% to 12% that are

basically in line with the prevalence rates of COVID-19 in

Fig. 6. The expected relative cost of Dorfman’s two-stage algorithm with
M ¼ 10 as a function of the number of seeded nodes jSj from 1 to 5 for the e-
mail-Eu-core dataset.

Fig. 7. The expected relative cost of Dorfman’s two-stage algorithm with
M ¼ 10 as a function of the number of seeded nodes jSj from 1 to 5 for the
political blogs dataset.

Fig. 8. The expected relative cost of Dorfman’s two-stage algorithm with
M ¼ 10 as a function of the number of seeded nodes jSj from 1 to 5 for the
ego-Facebook dataset.

TABLE VII
AVERAGE PREVALENCE RATES (UNIT: %)

Fig. 5. The expected relative cost of Dorfman’s two-stage algorithm with
M ¼ 10 as a function of the number of seeded nodes jSj from 1 to 5 for the
small-world dataset.
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various countries. Moreover, we can observe that the email-

Eu-core network has the highest prevalence rates among the

four datasets. Intuitively, the higher density and the higher

averaging clustering coefficient, the higher the prevalence

rate. However, under the IC model, the total number of people

infected in a network highly depends on the network’s struc-

ture. To conclude, under the IC model, the expected relative

costs for the small-world dataset and the three real-world data-

sets can be significantly reduced by roughly 10%-13% and

20%-35%, respectively, by exploiting positive correlation

within a social graph.

V. CONCLUSION

By modelling the arrival process of a COVID-19 testing site

by a regenerative process, we showed that the expected relative

cost for positively correlated samples is not higher than that of

i.i.d. samples with the same prevalence rate. A more detailed

model by a Markov modulated process allows us to derive a

closed-form expression for the expected relative cost. Using the

closed-form expression in Theorem 3, we showed that for a spe-

cificMarkov modulated process with a moderate positive corre-

lation, the gain by Dorfman’s two-stage method outperforms

those by using sophisticated strategies with ðd1; d2Þ-regular
pooling matrices when the prevalence rate is higher than 5%.

One important extension of our results is to consider the

pooled testing problem with a social graph. The frequent social

contacts between two persons are connected by an edge in the

social graph. To exploit positive correlation in a social graph,

we adopted the probabilistic framework of sampled graphs for

structural analysis in [18]–[20] and proposed a hierarchical

agglomerative algorithm for pooled testing with a social graph

in Algorithm 1. Our numerical results show that the pooled test-

ing strategy obtained from Algorithm 1 can have significant

cost reduction (roughly 20%-35%) in comparison with random

pooling when the Dorfman two-stage algorithm is used.

There are several possible extensions for our work:

(i) Association of random samples: in this paper, we

model in the arrival process by three explicit assump-

tions. It is possible to further generalize our results

by using the notion of association of random varia-

bles [32]. In particular, it was shown in Theorem 4.1

of [32] that (15) and (16) hold for associated binary

random variables.

(ii) Sensitivity/specificity analysis: in this paper, we did not

consider the effect of noise. Noise (see, e.g., the mono-

graph [33] for various noise models) can affect sensitiv-

ity (true positive rate) and specificity (true negative

rate) of a testing method. It would be of interest to see

how the expected relative cost is affected by a certain

type of noise, e.g., the dilution noise.

(iii) Information theory perspective: our analysis is mainly

from the queueing theory perspective. There are two

recent related works [34], [35] that also exploit commu-

nity structure for pool testing from the information the-

ory perspective. Such a perspective could lead to lower

bounds on the number of tests.
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